Интеллектуальная система поддержки принятия решений для сталевара разрабатывается центром машинного обучения ИТ-компании «Инфосистемы Джет» на основе технологий искусственного интеллекта. На первом этапе проекта была доказана применимость системы в электросталеплавильном цеху (ЭСПЦ) Абинского ЭлектроМеталлургического завода для определения оптимального расхода ферросплавов при процессе выплавки стали. Результатом второго этапа проекта станет введение системы в промышленную эксплуатацию.
Процесс выплавки стали — очень сложный и трудоемкий процесс, — сталевару необходимо учитывать множество факторов и требований для достижения заданных параметров качества. Для получения стали определенной марки сталевару нужно добавлять в расплавленный металл ферросплавы — дорогостоящие добавки, придающие стали нужные свойства. Основываясь на своем опыте, специалист электроплавильного цеха самостоятельно прогнозирует содержания элементов в составе выплавляемой стали и принимает решение о количестве добавок.
Благодаря опыту и квалификации специалистов, заводу удается обеспечивать высокое качество стали разных марок. Однако у ручного режима есть свои недостатки: относительно большое количество времени на принятие решения и неоптимальный расход ферросплавов.
Для автоматизации процесса на Абинском ЭлектроМеталлургическом заводе решили создать интеллектуальную систему на основе технологий машинного обучения, которая прогнозирует и рекомендует точное количество ферросплавов для каждой плавки. Цель проекта: сохранив качество стали, оптимизировать производство путем снижения расхода ферросплавов.
«Команда “Инфосистемы Джет” доказала применимость рекомендательной системы уже на первом этапе и принялась за интеграцию сервиса на основе ML в информационные системы завода, — говорит Анатолий Маслов, Директор по ИТ управляющей компании Новосталь-М. — Надеюсь, что его внедрение повысит не только качество работы сталеваров, но и компетенции сотрудников по работе с информационными системами».
В ходе второго этапа проекта выполняется интеграция с системами источников заказчика, разрабатываются интерфейсы для работы с системой, в результате система будет развернута в продуктивном сегменте. Следующий этап разработки — накопление данных, улучшение, адаптация, расширение функциональности и ландшафта применимости сервиса.
«Рекомендательная система — это кастомная разработка с применением ML. Опыт и компетенции нашей команды, а также глубокое погружение в предметную область позволяет быстро понять, что требуется заказчику и каким образом возможно решить его задачу. Хочу отметить, что представители завода оказали нам всестороннюю поддержку по описанию технологических процессов на производстве, — говорит Сергей Поняев, руководитель проекта от “Инфосистемы Джет”. — Положительные результаты первого этапа работ позволяют перейти на новый этап сотрудничества с АЭМЗ».